
SUSTECH — ARTIFICIAL INTELLIGENCE, PROJECT CARP, 11/24/2017 1

An Evolutionary Algorithm with Local Search for
the Capacitated Arc Routing Problem

FANG Yidong, Student No.11510493 CSE, Southern University of Science and Technology

Abstract— The capacitated arc routing problem (CARP)
is a difficult vehicle routing problem where, given an undi-
rected graph, the objective is to minimise the total cost
of all vehicle tours that serve all required edges under
vehicle capacity constraints. In this report, an evolution-
ary algorithm with local search is implemented based on
Python to solve this problem. The algorithm applies the
evolutionary mechanism to construct the whole framework,
using two special heuristic initializing algorithm, which is
random path scanning and augment merge, and the special
local search for routing problems.

Index Terms— capacitated arc routing problem; evolu-
tionary algorithm; local search; order crossover; path scan-
ning; augment merge;

I. INTRODUCTION

THE capacitated arc routing problem (CARP) may be
described as follows: consider an undirected connected

graph G = (V,E), with a vertex set V and edge set E and
a set of required edges R ⊆ E. A fleet of identical vehicles,
each of capacity Q, is based at a designated depot vertex.
Each edge of the graph (vi, vj) incurs a cost cij whenever
a vehicle travels over it or services a required edge.When a
vehicle travels over an edge without servicing it, this is referred
to as deadheading. Each required edge of the graph (vi, vj)
has a demand qij associated with it. A vehicle route must
start and finish at the designated depot vertex and the total
demand serviced on the route must not exceed the capacity
of the vehicle, Q. The objective of the CARP is to find a
minimum cost set of vehicle routes where each required edge
is serviced on one of the routes. The problem is proposed by
Golden and Wong in 1981 [1].

In the instances tested, the objective is to minimise the total
cost incurred on the routes and does not include any costs
relating to the number of routes or vehicles required.

II. EVOLUTIONARY ALGORITHM

The memetic algorithm introduced by Moscato (1989) [2],
also known as hybrid genetic algorithm or genetic local search,
is a combination of a population-based global search GA and
an individual-based local search. Several characters of our are:
(1) An order crossover method is used to keep the balance of
exploration and exploitation abilities; (2) the child of crossover
will have a probability to go into a local search for better local
optimal result; (3) one chromosome Pr is selected in the parent
population using binary tournament replacement, described in

Algorithm 1, and it is replaced by one child C if the child C
is not a clone of any other chromosome than Pr in the parent
population, else a simple mutation is implemented on the child
C to diversify the population; (4) The algorithm will restart
to increase the diversity of the population after a certain time
of iteration.

The whole algorithm framework is showin in Algorithm 1.

Algorithm 1 Main framework of the Algorithm
1: Initialize ps individuals in the population P , in

which idv0 is generated by Augment Merge, and
idv1, idv2, ..., idv19 is generated by Random Path Scan-
ning.

2: bestSoFar ← None
3: repeat
4: repeat
5: pa, pb ← randomSelect(P)
6: child1, child2← OrderCrossover(pa, pb)
7: newidv ← randomSelect(child1, child2)
8: rnd← random number from 0 to 1
9: if rnd ≤ Mutation rate pm then

10: newidv = localSearch(newidv)
11: end if
12: if Fitness(newidv) < max{Fitness(pa), Fitness(pb)}

then
13: if Fitness(newidv) < Fitness(bestSoFar) then
14: bestSoFar ← newidv
15: end if
16: Pr ← parent with larger cost
17: if Pr 6= newidv then
18: Pr ← newidv
19: else
20: newidv ← simpleMutation(newidv)
21: Pr ← newidv
22: end if
23: end if
24: until k max iteration number
25: until time t is very closed to the limited time

A. Initial Solution Deriving
1) Path Scanning: This method is based on the procedure

proposed by Golden et al. [3]. Each route is extended by one
required edge at each step using a variety of selection rules.

2 SUSTECH — ARTIFICIAL INTELLIGENCE, PROJECT CARP, 11/24/2017

Each route starts at the depot vertex. Let S be the set of
required edges closest to the end of the current route that are
not yet served and do not exceed the capacity of the current
route. If S is empty then complete the current route using the
shortest deadheading path from the end of the current route
to the depot vertex and start a new route. If S is not empty,
exclude from S any edges that would close the route unless
that would make S empty. Select a required edge in S to be the
next edge in the route to be serviced according to the current
rule and extend the current route to the vertex at the end of
the selected edge. Five rules are used to determine the next
required edge, e, in the route to be serviced: (1) minimise the
distance to to the end of the current route; (2) maximise the
ratio dij /cij , where dij and cij are, respectively, the demand
and the cost of (vi, vj); (3) minimise this ratio; (4) minimise
the return cost; (5) use rule 1 if the vehicle is less than halffull,
else use rule 4; Each criterion gives rise to one solution and
the best of the five is chosen.

In our implementation we set the rule 1 as the highest
priority. Then, if the two required edge have the same distance,
we will randomly choose one rule to break the tie. The details
are shown in Algorithm 2.

Algorithm 2 Random Path-Scanning for one priority rule
1: k ← 0
2: copy all required arcs in a list free
3: repeat
4: k ← k + 1;Rk ← ø; load(k), cost(k)← 0; i← 1
5: repeat
6: d←∞
7: for each u ∈ free|load(k) + 1u ≤ Q do
8: if di,beg(u) < d then
9: d← di,beg(u)

10: u← u
11: else if di,beg(u) = dand better(u, u, rule) then
12: u← u
13: end if
14: end for
15: add u at the end of route Rk

16: remove arc u and its ooposite u + m from free
17: load(k)← load(k) + q

u

18: cost(k)← cost(k) + d + cu
19: until free = ø or (d =∞)
20: cost(k)← cost(k) + di1
21: until free = ø

2) Augment Merge: Augment-Merge (AM), just sketched
in 1981 by Golden and Wong [1], was detailed in 1983 by
Golden, DeArmon, and Baker [3]. It is inspired by the Clarke
and Wright Heuristic (CWH) for the CVRP [4]. The heuristic
builds first one direct trip for each required edge. Then, a
Merge phase is executed, in which each iteration considers
each pair of routes and evaluates the saving if the two routes
are merged (concatenated). There are four ways of merging
two given routes, as each route can be reversed or not. The
merger with the largest saving is executed, and this process is
repeated until no merger is possible without violating vehicle

capacity.
Compared with CWH, a preliminary phase called Augment

is added. The initial routes are sorted in nonincreasing order
of costs. Recall that we represent a route as a list of required
arcs (see introduction). Starting from the longest route, each
route Rk = ((i, j)), k = 1, 2, ..., t− 1, is compared with each
shortest route Rp, p = k + l, k + 2, ..., t such that the sum of
their loads fits vehicle capacity. If the unique edge serviced
by Rp lies on SP1i or SPj1, it can be transferred in Rk and
Rp can be replaced by an empty trip. The cost of Rk does
not change, but a saving equal to the cost of R is incurred.
The Augment phase can strongly reduce the total cost and the
number of routes before starting the Merge phase.

This nontrivial heuristic is detailed in Algorithm 7.3 of book
Arc Routing [5], where Fk and Lk denote the first and last
node of route Rk. The Augment phase can be implemented in
O(nt2), while the Merge phase is dominated by the sort line 24
in O(t2logt). The whole complexity is then O(t2(n + logt)),
or O(m2n) if all edges are required.

B. Chromosomes structure and evaluation

To describe the tasks clearly, each required edge is identified
by being marked a task number instead of one pair of nodes.
Each edge u ∈ E has a tail (start node) a(u), a head (end node)
b(u), and a traversing (deadheading) cost tc(u). Each required
edge (task) u ∈ ER has a demand d(u), a serving cost sc(u),
and an inverse mark inv(u). Task inv(u) and u have the same
traversing demand, and serving costs. Note that each edge task
u ∈ ER can be served in either direction, i.e., only one of
task u and inv(u) is served. Inspired by Lacomme, Prins,
and Ramdane-Cherif [6], our chromosome T is a permutation
of t required edges (tasks), without route delimiters. Implicit
shortest paths are between consecutive tasks. They can be
viewed as a RPP or a giant tour.

Under this kind of chromosomes structure, the chromosome
must be converted into a CARP solution by a partition (Ulu-
soy 1985) [7] procedure which corresponds to chromosome
decoding and can evaluate the performance of each chromo-
some. The fitness is the total cost of this solution. Given a
chromosome T = (c1, c2, ..., ct) where t corresponds to the
number of tasks, the partition procedure works on an auxiliary
directed acyclic graph Ga = (X,Y, Z), where X is a set of
t + 1 vertex indices from a dummy node 0 to t. Y is a set
of arcs where one arc (i, j) ∈ Y means that a trip serving
tasks subsequence ci+1, ci + 2, ..., cj is feasible in terms of
capacity, i.e., load(i + 1, j) ≤ Q where loadi 1;j is the
load of the trip. Z is the set of the weight of arcs where one
weight z ij corresponds to the total cost of one vehicle to serve
task subsequence ci+1, ci + 2, ..., cj . The optimal partitioning
of the chromosome T corresponds to a shortest path from
node 0 to node t in Ga. Thus, this problem is a shortest path
problem (SPP), which can be solved in pseudo-poly- nomial
time based on Bellmans algorithm. Consider one example
of vehicle capacity Q = 30 and four edge tasks with their
respective demands being 8, 14, 8, and 9. Figure 1(a) shows
the chromosome tour T = (c1, c2, c3, c4) with demands in
brackets. Thin dotted lines represent shortest paths between

FANG YIDONG, AN EVOLUTIONARY ALGORITHM WITH LOCAL SEARCH FOR THE CAPACITATED ARC ROUTING PROBLEM 3

Fig. 1. Example of Partition

Fig. 2. Illustration of the Order Crossover

any two nodes, the numbers under t = 4 tasks are the serving
costs, and D represents the depot. The partition procedure
builds an auxiliary graph G a with t+1 nodes indexed from 0
to t, as shown in Figure 1(b). Arc (0, 1) represents the trip
(0, c1, 0), where the first 0 and the last 0 correspond to the
depot. A shortest path from node 0 to node t in Ga (bold)
indicates the optimal partitioning of T : two trips with total cost
of 89. The resulting CARP solu- tion is the trip (0, c1, c2, 0)
with a cost of 42 the trip (0, c3, c4, 0) with a cost of 47, as
shown in Figure 1(c).

C. Reproduction Step and Extended OX Crossover

The crossover operator is analogous to reproduction and
biological crossover. In this more than one parent is selected
and one or more off-springs are produced using the genetic
material of the parents. In the algorithm, we apply the Davis
Order Crossover (OX1).

OX1 is used for permutation based crossovers with the
intention of transmitting information about relative ordering

to the off-springs. It works as follows, and the process is
illustrated in Figure 2.

• Create two random crossover points in the parent and
copy the segment between them from the first parent to
the first offspring.

• Now, starting from the second crossover point in the
second parent, copy the remaining unused numbers from
the second parent to the first child, wrapping around the
list.

• Repeat for the second child with the parents role reversed.
There exist a lot of other crossovers like Partially Mapped

Crossover (PMX), Order based crossover (OX2), Shuffle
Crossover, Ring Crossover, etc. Parents are chosen by binary
tournament selection. We first randomly select two solutions
from the population. We then select from these two the least
cost solution to be the first parent P1. This procedure is
repeated to get the second parent P2. The two parents undergo
an extended version of the classical order crossover (OX). The
reproduction step ends by randomly keeping only one child C
and by discarding the other. This policy works slightly better
than keeping two children or the best one.

For two parents P1 and P2 of length t, the classical OX
crossover draws two random subscripts p and q with 1 ≤
p ≤ q ≤ t. To build child C1, it copies the string P1[p]-
P1[q] into C1[p]-C1[q]. Finally, it scans P2 in a circular way
from q + 1 (mod t) and copies each element not yet taken to
fill C1 circularly, starting from q + 1 (mod t) too. The roles
of P1 and P2 are exchanged to get the other child C2. OX
must be extended for the CARP and our data structure. Each
chromosome contains all t tasks, but an edge can appear as
one internal arc u or as its inverse inv(u). Therefore, when
copying u from a parent, we must check whether u and inv(u)
are not already taken.

D. Local Search as Mutation Operator
We mutate with a fixed rate pm the child C produced by

the crossover. The mutation operator is a local search LS,
giving a hybrid GA. It is clear nowadays that hybrid GAs are
better than Hollands basic GA and can even outperform other
metaheuristics. Before applying LS, the child is converted
into a set of trips, using steps 2-3 of Ulusoys algorithm.
Each iteration of LS scans in O(t2) all possible ways of
moving a task (in one trip or to another trip) and all possible
permutations of two tasks (in one trip or between two distinct
trips). The collecting direction of an edge-task u may be
inverted during this process, i.e. we try to reinsert u or inv(u).
We also inspect two kinds of 2-opt moves by removing two
shortest paths (possibly empty) u− v and x− y, in the same
trip or in distinct trips (u, v, x and y denote a task or the depot
loop). We replace them by shortest paths u− y and v − x or
by paths u−x and v−y. 2-opt moves are not always possible
in mixed networks because they may invert the trip order.

At each iteration, the first improving move is executed. The
process is repeated until no further saving can be found. Some
trips may become empty and are removed at the end. The child
C is kept. A new chromosome S is rebuilt from the final trips
(by concatenating their tasks) and re-evaluated with step 2 of

4 SUSTECH — ARTIFICIAL INTELLIGENCE, PROJECT CARP, 11/24/2017

Ulusoys algorithm mentioned in section II-B. Quite often, this
slightly improves LS by shifting some trip limits. The local
search steps include:

• Flip one task a, i.e., replace a by inv(a) in its trip,
• Move one task a after another task or after the depot,
• Move two consecutive tasks a and b after another task or

after the depot,
• Swap two tasks a and b,
• 2-opt moves

III. CODE IMPLEMENTATION

In this project, all the code are implemented based on
Python2, and none of external packages is used except numpy.
The code are also written in an Objected-oriented way, which
mainly contains classes for undirected graph, directed graph
and the solver.

A. Data Structures
For the storage of the infomation for the edges and nodes,

a class is defined, and most of the infomation is stored in the
python multi-level dict structure, which can be defined and
retrived in O(n) time. For the first and second level, we use
the node numbers as keys and in the third level, the attribes
like cost and demand are considered. For convenience, a set
for storing the tasks is also defined for quick iteration over
tasks.

At the same time, the Floyd-Warshall algorithm is imple-
mented for the generating of all shortest paths between every
two nodes. This algorithm is based on Dynamic Programming
and the complexity is O(|V |3), where |V | is denoted as the
number of nodes in the graph.

In the main algorithm, servel data structures are used. The
most important ones are the dict for storing the infomation
for each individual in the population. The field of it is shown
below:

• chromesome: list, a list of tasks without delimiters
• partition: list of list, the route derived from chromesome

with optimal delimiters, which can be get by the Ulusoy
partition algorithm mentioned previously.

• load: list, the load for each trip in the route, used for fast
load calculation, which will be metioned in Section III-C.

• cost: list, the cost for each trip in the route, similar usage
to load’s

• fitness: int, the total cost of the solution.

B. Multi-processing for Computing and Multi-threading
for Controlling

In our algorithm, the paralleling is only applied on the level
of the whole algorithm, which means it just like running the
same algorithm for a couple of time and the progrom put it
on different processers. The number of computing processors
can be adjusted in the main entrance file.

There are together two theads in the main process. One
thread is used for timing and terminate the processors when
the time is up while the other one is in charge of collecting the
new solution from a queue where the computing processors
are pushing the solutions in.

TABLE I
COMPUTATIONAL RESULT

Instance 10s
Quality
Diff

20s
Quality
Diff

30s
Quality
Diff

60s
Quality
Diff

90s
Quality
Diff

Optimal
Solution

egl-e1-A-10 3960
11.60%

3843
8.32 %

3794
6.95 %

3789
6.80%

3725
4.98%

3548

egl-s1-A 6344
26.42%

6273
25.00%

6206
23.67%

6020
19.79%

5950
18.58%

5018

gdb1 316
0%

316
0%

316
0%

316
0%

316
0%

316

gdb3 281
2.08%

277
0.83%

277
0.83%

275
0%

275
0%

275

val1A 180
4.13%

180
4.13%

179
3.22%

176
1.65%

176
1.65%

173

val4A 444
11.00%

436
8.89%

434
8.61%

431
7.86%

426
6.43%

400

val7A 313
12.19%

305
9.47%

302
8.24%

297
6.40%

297
6.40%

277

C. Some Tricky Points: the Calculation During Local
Search

During the development, it is found that because the com-
plexity, the time cost during the local search is extremely large
(It takes around 26 seconds for a solution in egl-s1-A.dat to
scan the inverse of each tasks in the solution). This is the
evaluation Thus the complexity of the local search actully
increased to O(t3). A very usedful optimization proposed in
our program is that we try to calculate the difference between
original solution and the new solution, this significatly reduces
the computation time to about 10% of the original one.

IV. COMPUTATIONAL RESULT

Our experiment is taken on a VMWare-based virtual ma-
chine. The host of it is WINDOWS 10, with an Intel Core
i7-6700 CPU and 8 GB memory. The CPU has 8 logical
Processors and two of them is assigned to the virtual machine.

The algorithm is tested on servel standard instances given
with the project files. And the results are listed in Table I.
Note that each average number is calculated by 6 runs with
different random seeds.

V. RESULT ANALYSIS AND FURTHER DIRECTION

The result got by the algorithm is very good for the small-
scal problem, while it is not so good for the problem with
larger size, it is easy for the algorithm to sucked in a local
optimal. This may be caused by the lack of variety in the
population set. Some new initilization methods should be used
to increse the variety of the population.

Also, the local search speed is still not very good compared
to the large size of the population. There are two ways that
may be effective to work around with the problem. First is try
to parallelize the local search phase by local searching a lot
of solution at the same time. Another point to be improved
is to continue scanning the same solution even when get a
improvable point and update the solution in a global manner.
This can avoid rescanning many repeated part of the same
solution, but requires some sophisticated design of the local
search algorithm.

FANG YIDONG, AN EVOLUTIONARY ALGORITHM WITH LOCAL SEARCH FOR THE CAPACITATED ARC ROUTING PROBLEM 5

VI. CONCLUSION

In the evolutionary algorithm implemented by us, we com-
bine several special methods to adjust to the conditions in the
Capacitated Arc Routing Problem. Although the results can
not still get very close to the best solutions compared to the
state of art algorithm due to the limitation of time, a lot of
useful algorithms and thoughts are learnt during the project.

REFERENCES

[1] B. L. Golden and R. T. Wong, “Capacitated arc routing problems,”
Networks, vol. 11, no. 3, pp. 305–315, 1981.

[2] P. Moscato et al., “On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms,” Caltech concurrent com-
putation program, C3P Report, vol. 826, p. 1989, 1989.

[3] B. Golden, J. Dearmon, and E. Baker, “Computational experiments with
algorithms for a class of routing problems,” Computers & Operations
Research, vol. 10, no. 1, pp. 47–59, jan 1983.

[4] G. Clarke and J. W. Wright, “Scheduling of vehicles from a central depot
to a number of delivery points,” in The Roots of Logistics. Springer Berlin
Heidelberg, 2012, pp. 229–244.

[5] A. Corberán and G. Laporte, Arc Routing: Problems, Methods, and
Applications. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2015.

[6] P. Lacomme, C. Prins, and W. Ramdane-Chérif, “A genetic algorithm for
the capacitated arc routing problem and its extensions,” in Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2001, pp. 473–483.

[7] G. Ulusoy, “The fleet size and mix problem for capacitated arc routing,”
European Journal of Operational Research, vol. 22, no. 3, pp. 329–337,
dec 1985.

